R. Edward "Ed" Coleman, MD, a pioneer in the development of PET and a visionary leader in its translation to routine clinical use, died on June 25 in Durham, NC. He was born in Otwell, IN. He received his bachelor’s degree from the University of Evansville (IN) and his medical degree from Washington University (St. Louis, MO), where he also completed an internship in internal medicine. After residency at the Royal Victoria Hospital (Montreal, Canada), he returned to St. Louis in 1972 for a fellowship in nuclear medicine at the Mallinckrodt Institute of Radiology. He stayed at Mallinckrodt through 1976, first as an instructor and then as an assistant professor. While at Mallinckrodt, he collaborated with Michel Ter-Pogossian, PhD, and a team of physicians, physicists, chemists, and computer scientists in the development of PET technologies.

In 1976 he accepted a position as an assistant professor of radiology at the University of Utah Medical Center (Salt Lake City) and became an associate professor in 1978. In 1979 he became a professor of radiology and director of nuclear medicine at Duke University Medical Center (Durham, NC) and director of nuclear medicine at the Durham Veterans Affairs Medical Center. In June he completed his 33rd year at Duke, having served in multiple leadership roles, including as a vice chair in the Department of Radiology. Throughout these years, Coleman maintained a focus on PET, promoting hybrid integration with x-ray CT and advocating appropriate clinical applications for PET/CT. This effort involved a tireless collaboration with academia, industry, and government. He was instrumental in establishing the National Oncologic PET Registry that facilitated greatly expanded Medicare coverage of PET.

More than 20 years ago Coleman identified in Newsline the key challenges to be overcome before PET could become widely used (and reimbursed) in clinical imaging: (1) improved tomographic hard- and software; (2) automation of cyclotrons and reliable access to PET radiopharmaceuticals; (3) generation of clinical data validating the benefits of PET; and (4) clarification of the role of U.S. Food and Drug Administration jurisdiction over PET radiopharmaceuticals (J Nucl Med. 1991;32[4]:42N–52N). It is a testament to his vision, dedication, and hard work that he personally led efforts on each of these fronts. His words in 1991 remain true today: “Clinical PET is the epitome of the application of the tracer method to medical diagnosis. . . . If nuclear medicine does not demonstrate its interest in the development and application of PET, other specialties will make PET their own.”

Coleman was a founder and first president of the Institute of Clinical PET and a president of the Academy of Molecular Imaging. He served as chair of the American Board of Nuclear Medicine (1992–1994) and was a fellow of both the American College of Radiology and American College of Chest Physicians. In 2007 he received SNM’s Georg Charles de Hevesy Nuclear Pioneer award. His name regularly appeared on lists of best physicians in the United States, and he received an honorary doctorate from his undergraduate alma mater.

Throughout his career Coleman maintained a vigorous interest in academic work and research that encompassed an amazing breadth of topics. Examples of his diverse research contributions include pioneering studies of 111Inlabeled leukocytes and platelets and radioimmunotherapy of gliomas. He also contributed extensively to the literature on diagnosis of pulmonary embolism and cardiovascular nuclear medicine. His prodigious output of more than 530 peer-reviewed publications and more than 100 textbooks and book chapters is evidence not only of the broad scope of his interests but of his ability to form lasting and productive collaborations with colleagues from across other disciplines. He was able to engage other specialists in working with his team at Duke to discover ways nuclear medicine could

Reprinted with permission from the Society of Nuclear Medicine from J Nucl Med August 8, 2012 vol. 53 no.8 16N
illuminating longstanding questions and bring novel insights to both diagnosis and therapy. Ed trained numerous physicians at Duke, many of whom are now recognized leaders in nuclear medicine and radiology. In training residents, he invariably emphasized the impact of imaging studies on patient care, and his teaching style incorporated a mixture of scientific evidence, anecdotal experience, and occasional humor. For this, he received multiple teaching awards during his tenure at Duke. He was also involved in the training of many physicists, graduate students, and postdocs and was a faculty member in the graduate medical physics program at Duke.

For those of us who had the privilege of working with him on a daily basis, Ed was a friend, a mentor, a colleague, and a leader: but most of all he was a genial spirit and an inspiration. No matter how busy things were, Ed always had time to listen. He treated everyone he knew with respect and, in turn, was highly respected by all. Ed’s many interests—his athletic ability (he was a member of the University of Evansville’s national championship basketball team), his ongoing passion for sports (notably Duke basketball), his devotion to his children, his zest for travel (he successfully summited Mt. Kilimanjaro with his daughter, son, and son-in-law)—all characterized his enthusiasm for action. This enthusiasm carried over to the care of his patients and in his academic pursuit to revolutionize imaging and revitalize nuclear medicine practice.

Ed is survived by his wife, Irma; 2 daughters; 1 son; 2 stepchildren; 5 grandchildren; and 5 step-grandchildren. A memorial service was held on June 28 at the Duke University Chapel. A tribute to Ed’s life and career is planned for later in the year.

Timothy Turkington, PhD
Terence Wong, MD, PhD

Duke University Medical Center Durham, NC